您现在的位置是:网站首页> 编程资料编程资料

Keras搭建分类网络平台VGG16 MobileNet ResNet50_python_

2023-05-26 508人已围观

简介 Keras搭建分类网络平台VGG16 MobileNet ResNet50_python_

才发现做了这么多的博客和视频,居然从来没有系统地做过分类网络,做一个科学的分类网络,对身体好。

源码下载

分类网络的常见形式

常见的分类网络都可以分为两部分,一部分是特征提取部分,另一部分是分类部分。

特征提取部分的功能是对输入进来的图片进行特征提取,优秀的特征可以帮助更容易区分目标,所以特征提取部分一般由各类卷积组成,卷积拥有强大的特征提取能力;

分类部分会利用特征提取部分获取到的特征进行分类,分类部分一般由全连接组成,特征提取部分获取到的特征一般是一维向量,可以直接进行全连接分类。

通常情况下,特征提取部分就是我们平常了解到的各种神经网络,比如VGG、Mobilenet、Resnet等等;而分类部分就是一次或者几次的全连接,最终我们会获得一个长度为num_classes的一维向量。

分类网络介绍

1、VGG16网络介绍

VGG是由Simonyan 和Zisserman在文献《Very Deep Convolutional Networks for Large Scale Image Recognition》中提出卷积神经网络模型,其名称来源于作者所在的牛津大学视觉几何组(Visual Geometry Group)的缩写。

该模型参加2014年的 ImageNet图像分类与定位挑战赛,取得了优异成绩:在分类任务上排名第二,在定位任务上排名第一。

它的结构如下图所示:

这是一个VGG16被用到烂的图,但确实很好的反应了VGG16的结构,整个VGG16由三种不同的层组成,分别是卷积层、最大池化层、全连接层。

VGG16的具体执行方式如下: 

1、一张原始图片被resize到(224,224,3)。 

2、conv1:进行两次[3,3]卷积网络,输出的特征层为64,输出为(224,224,64),再进行2X2最大池化,输出net为(112,112,64)。 

3、conv2:进行两次[3,3]卷积网络,输出的特征层为128,输出net为(112,112,128),再进行2X2最大池化,输出net为(56,56,128)。 

4、conv3:进行三次[3,3]卷积网络,输出的特征层为256,输出net为(56,56,256),再进行2X2最大池化,输出net为(28,28,256)。 

5、conv4:进行三次[3,3]卷积网络,输出的特征层为512,输出net为(28,28,512),再进行2X2最大池化,输出net为(14,14,512)。 

6、conv5:进行三次[3,3]卷积网络,输出的特征层为512,输出net为(14,14,512),再进行2X2最大池化,输出net为(7,7,512)。 

7、对结果进行平铺。 

8、进行两次神经元为4096的全连接层。 

9、全连接到1000维上,用于进行分类。

最后输出的就是每个类的预测。

实现代码如下:

import warnings from keras.models import Model from keras.layers import Input,Activation,Dropout,Reshape,Conv2D,MaxPooling2D,Dense,Flatten from keras import backend as K def VGG16(input_shape=None, classes=1000): img_input = Input(shape=input_shape) # Block 1 x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input) x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x) # Block 2 x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x) x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x) # Block 3 x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x) x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x) # Block 4 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x) # Block 5 x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x) x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x) x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x) x = Flatten(name='flatten')(x) x = Dense(4096, activation='relu', name='fc1')(x) x = Dense(4096, activation='relu', name='fc2')(x) x = Dense(classes, activation='softmax', name='predictions')(x) inputs = img_input model = Model(inputs, x, name='vgg16') return model 

2、MobilenetV1网络介绍

MobilenetV1模型是Google针对手机等嵌入式设备提出的一种轻量级的深层神经网络,其使用的核心思想便是depthwise separable convolution(深度可分离卷积块)。

深度可分离卷积块由两个部分组成,分别是深度可分离卷积和1x1普通卷积,深度可分离卷积的卷积核大小一般是3x3的,便于理解的话我们可以把它当作是特征提取,1x1的普通卷积可以完成通道数的调整。

下图为深度可分离卷积块的结构示意图:

深度可分离卷积块的目的是使用更少的参数来代替普通的3x3卷积。

我们可以进行一下普通卷积和深度可分离卷积块的对比:

对于普通卷积而言,假设有一个3×3大小的卷积层,其输入通道为16、输出通道为32。具体为,32个3×3大小的卷积核会遍历16个通道中的每个数据,最后可得到所需的32个输出通道,所需参数为16×32×3×3=4608个。

对于深度可分离卷积结构块而言,假设有一个深度可分离卷积结构块,其输入通道为16、输出通道为32,其会用16个3×3大小的卷积核分别遍历16通道的数据,得到了16个特征图谱。在融合操作之前,接着用32个1×1大小的卷积核遍历这16个特征图谱,所需参数为16×3×3+16×32×1×1=656个。

可以看出来深度可分离卷积结构块可以减少模型的参数。

深度可分离卷积的代码如下:

def _depthwise_conv_block(inputs, pointwise_conv_filters, alpha, depth_multiplier=1, strides=(1, 1), block_id=1): pointwise_conv_filters = int(pointwise_conv_filters * alpha) x = DepthwiseConv2D((3, 3), padding='same', depth_multiplier=depth_multiplier, strides=strides, use_bias=False, name='conv_dw_%d' % block_id)(inputs) x = BatchNormalization(name='conv_dw_%d_bn' % block_id)(x) x = Activation(relu6, name='conv_dw_%d_relu' % block_id)(x) x = Conv2D(pointwise_conv_filters, (1, 1), padding='same', use_bias=False, strides=(1, 1), name='conv_pw_%d' % block_id)(x) x = BatchNormalization(name='conv_pw_%d_bn' % block_id)(x) return Activation(relu6, name='conv_pw_%d_relu' % block_id)(x) 

通俗地理解深度可分离卷积结构块,就是3x3的卷积核厚度只有一层,然后在输入张量上一层一层地滑动,每一次卷积完生成一个输出通道,当卷积完成后,在利用1x1的卷积调整厚度。

如下就是MobileNet的结构,其中Conv dw就是深度可分离卷积,在其之后都会接一个1x1的卷积进行通道处理,

在利用特征提取部分完成输入图片的特征提取后,我们会利用全局平均池化将特征层调整成一个特征长条,我们可以将特征长条进行全连接,获得最终的分类结果。

实现代码如下:

import warnings from keras.models import Model from keras.layers import DepthwiseConv2D,Input,Activation,Dropout,Reshape,BatchNormalization,GlobalAveragePooling2D,GlobalMaxPooling2D,Conv2D from keras import backend as K def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1)): filters = int(filters * alpha) x = Conv2D(filters, kernel, padding='same', use_bias=False, strides=strides, name='conv1')(inputs) x = BatchNormalization(name='conv1_bn')(x) return Activation(relu6, name='conv1_relu')(x) def _depthwise_conv_block(inputs, pointwise_conv_filters, alpha, depth_multiplier=1, strides=(1, 1), block_id=1): pointwise_conv_filters = int(pointwise_conv_filters * alpha) x = DepthwiseConv2D((3, 3), padding='same', depth_multiplier=depth_multiplier, strides=strides, use_bias=False, name='conv_dw_%d' % block_id)(inputs) x = BatchNormalization(name='conv_dw_%d_bn' % block_id)(x) x = Activation(relu6, name='conv_dw_%d_relu' % block_id)(x) x = Conv2D(pointwise_conv_filters, (1, 1), padding='same', use_bias=False, strides=(1, 1), name='conv_pw_%d' % block_id)(x) x = BatchNormalization(name='conv_pw_%d_bn' % block_id)(x) return Activation(relu6, name='conv_pw_%d_relu' % block_id)(x) def MobileNet(input_shape=None, alpha=1.0, depth_multiplier=1, dropout=1e-3, classes=1000): img_input = Input(shape=input_shape) # 224,224,3 -> 112,112,32 x = _conv_block(img_input, 32, alpha, strides=(2, 2)) # 112,112,32 -> 112,112,64 x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1) # 112,112,64 -> 56,56,128 x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, strides=(2, 2), block_id=2) x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3) # 56,56,128 -> 28,28,256 x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, strides=(2, 2), block_id=4) x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5) # 28,28,256 -> 14,14,512 x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, strides=(2, 2), block_id=6) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11) # 14,14,512 -> 7,7,1024 x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, strides=(2, 2), block_id=12) x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13) # 7,7,1024 -> 1,1,1024 x = GlobalAveragePooling2D()(x) shape = (1, 1, int(1024 * alpha)) x = Reshape(shape, name='reshape_1')(x) x = Dropout(dropout, name='dropout')(x) x = Conv2D(classes, (1, 1),padding='same', name='conv_preds')(x) x = Activation('softmax', name='act_softmax')(x) x = Reshape((classes,), name='reshape_2')(x) inputs = img_input model = Model(inputs, x, name='mobilenet_%0.2f' % (alpha)) return model def relu6(x): return K.relu(x, max_value=6) if __name__ == '__main__': model = MobileNet(input_shape=(224, 224, 3)) model.summary() 

3、ResNet50网络介绍

提示: 本文由整理自网络,如有侵权请联系本站删除!
本站声明:
1、本站所有资源均来源于互联网,不保证100%完整、不提供任何技术支持;
2、本站所发布的文章以及附件仅限用于学习和研究目的;不得将用于商业或者非法用途;否则由此产生的法律后果,本站概不负责!

-六神源码网